Class-based tag recommendation and user-based evaluation in online audio clip sharing

نویسندگان

  • Frederic Font
  • Joan Serrà
  • Xavier Serra
چکیده

Online sharing platforms often rely on collaborative tagging systems for annotating content. In this way, users themselves annotate and describe the shared contents using textual labels, commonly called tags. These annotations typically suffer from a number of issues such as tag scarcity or ambiguous labelling. Hence, to minimise some of these issues, tag recommendation systems can be employed to suggest potentially relevant tags during the annotation process. In this work, we present a tag recommendation system and evaluate it in the context of an online platform for audio clip sharing. By exploiting domain-specific knowledge, the system we present is able to classify an audio clip among a number of predefined audio classes and to produce specific tag recommendations for the different classes. We perform an in-depth user-based evaluation of the recommendation method along with two baselines and a former version that we described in previous work. This user-based evaluation is further complemented with a prediction-based evaluation following standard information retrieval methodologies. Results show that the proposed tag recommendation method brings a statistically significant improvement over the previous method and the baselines. In addition, we report a number of findings based on the detailed analysis of user feedback provided during the evaluation process. The considered methods, when applied to real-world collaborative tagging systems, should serve the purpose of consolidating the tagging vocabulary and improving the quality of content annotations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Folksonomy-based Tag Recommendation for Online Audio Clip Sharing

Collaborative tagging has emerged as an efficient way to semantically describe online resources shared by a community of users. However, tag descriptions present some drawbacks such as tag scarcity or concept inconsistencies. In these situations, tag recommendation strategies can help users in adding meaningful tags to the resources being described. Freesound is an online audio clip sharing sit...

متن کامل

Audio Clip Classification Using Social Tags and the Effect of Tag Expansion

Methods for automatic sound and music classification are of great value when trying to organise the large amounts of unstructured, user-contributed audio content uploaded to online sharing platforms. Currently, most of these methods are based on the audio signal, leaving the exploitation of users’ annotations or other contextual data rather unexplored. In this paper, we describe a method for th...

متن کامل

Developing a Recommendation Framework for Tourist by Mining Geo-tag Photos (Case Study Tehran District 6)

With the increasing popularity of sharing media on social networks and facilitating access to location technologies, such as Global Positioning System (GPS), people are more interested to share their own photos and videos. The world wide web users are no longer the sole consumer but they are producers of information also, hence a wealth of information are available on web 2.0 applications. The ...

متن کامل

Analysis of the Folksonomy of Freesound

User generated content shared in online communities is often described using collaborative tagging systems where users assign labels to content resources. As a result, a folksonomy emerges that relates a number of tags with the resources they label and the users that have used them. In this paper we analyze the folksonomy of Freesound, an online audio clip sharing site which contains more than ...

متن کامل

Music Recommendation: Audio Neighbourhoods to Discover Music in the Long Tail

Millions of people use online music services every day and recommender systems are essential to browse these music collections. Users are looking for high quality recommendations, but also want to discover tracks and artists that they do not already know, newly released tracks, and the more niche music found in the ‘long tail’ of on-line music. Tag-based recommenders are not effective in this ‘...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Knowl.-Based Syst.

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2014